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Plenary Lectures
The fundamental bifurcation theorem for nonlinear matrix

equations in the absence of strict dominance (and what does it
have to do with cicadas?

J. M. CUSHING

University of Arizona
Department of Mathematics

Interdisciplinary Program in Applied Mathematics
Tucson AZ 85721, USA

cushing@math.arizona.edu
http://math.arizona.edu/˜cushing/

For a difference equation x(t + 1) = Px(t) with a nonnegative and irreducible matrix
P , the equilibrium x = 0 losses stability as the dominant eigenvalue r of P increases
through 1, at which point there is a continuum of positive equilibria. In a population
dynamic setting, this fundamental bifurcation theorem concerns the basic question of
extinction versus persistence of the modeled population. Most population models are,
however, nonlinear. A fundamental bifurcation theorem for nonlinear matrix models
x(t+1) = P (x(t))x(t) asserts the bifurcation of positive equilibria as the inherent growth
rate r(0) (the dominant eigenvalue of P (0)) increases through 1. The spectrum of r(0)
values associated with the bifurcating continuum is then an interval, instead of a point,
and the stability of the positive equilibria near bifurcation depends on the direction of
bifurcation. This fundamental theorem requires that r(0) be a strictly dominant eigen-
value of P (0). For a biologically important class of models, however, r(0) is not strictly
dominant. It turns out that this mathematical subtlety relates to a basic question in pop-
ulation dynamics concerning life history strategies for individuals in biological popula-
tions, namely, whether to reproduce once (semelparity) or more than once (iteroparity). I
will survey what is known about the fundamental bifurcation theorem for semelparous
matrix models (when r(0) is not strictly dominant). There will be many open problems.

[1] J. M. Cushing, Nonlinear semelparous Leslie models, Mathematical Biosciences and
Engineering 3, 1 (2006), 17-36.

[2] J. M. Cushing, Three stage semelparous Leslie models, Journal of Mathematical Biol-
ogy 59 (2009), 75-104.
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Dynamic classification of Sierpinski curve Julia sets

ROBERT L. DEVANEY

Department of Mathematics & Statistics
Boston University

111 Cummington St.
Boston, MA 02215 USA

bob@bu.edu
http://math.bu.edu/people/bob

In this talk we consider the family of rational maps of the form zn + C/zd where n > 1.
When all the critical orbits escape to infinity, it is known that the Julia set is a Sierpinski
curve, i.e., homeomorphic to the Sierpinski carpet. While all these sets are homeomor-
phic, they have very different dynamics depending upon the behavior of the critical or-
bits. We give a complete classification of these dynamical behaviors.

Joint work with Kevin Pilgrim.
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Difference equations for evolutionary games

JOSEF HOFBAUER

University of Vienna
Institute of Mathematics

Nordbergstraße 15
A-1090 Vienna, Austria

Josef.Hofbauer@univie.ac.at
http://homepage.univie.ac.at/Josef.Hofbauer/

I will present several discrete time dynamical systems (=difference equations) that arise
in evolutionary game theory, population genetics and population dynamics.

[1] J. Hofbauer and K. Sigmund, Evolutionary Game Dynamics, Bull. Amer. Math. Soc.
40 (2003), 479-519.

[2] T. Nagylaki, J. Hofbauer and P. Brunovský, Convergence of multilocus systems
under weak epistasis or weak selection, J. Math. Biology 38 (1999), 103-133.

[3] F. Hofbauer, J. Hofbauer, P. Raith and T. Steinberger, Intermingled basins in a two
species system, J. Math. Biology 49 (2004), 293-309.
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Periodic solutions of second order nonlinear difference
equations : variational approach

JEAN MAWHIN

Catholic University of Louvain
Institute of Mathematics and Physics

chemin du cyclotron 2
B-1348 Louvain-la-Neuve, Belgium

jean.mawhin@uclouvain.be

Since 2003, results about the existence and multiplicity of T-periodic solutions of T-perio-
dic systems of difference equations of the form

∆φ[∆u(n− 1)] = ∇uF [n, u(n)] + h(n) (n ∈ Z)

have been obtained using variational methods and critical point theory. In this equation,
φ = ∇Φ, with Φ strictly convex, is a homeomorphism from its domain of definition in
RN onto RN . The classical situations correspond to φ(v) = |v|p−2v (p > 1).
Special emphasis is made upon recent results for the case where φ is a homeomorphism
from some open ball of RN onto RN . Various conditions upon F and h are given for the
existence of T-periodic solutions. The approach combines variational inequalities and
Brouwer degree.
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Chimera states and ideal turbulence

A. N. SHARKOVSKY, S. A. BEREZOVSKY and
E. YU. ROMANENKO

National Academy of Sciences of Ukraine
Institute of Mathematics
Tereshchenkivska str., 3

01604 Kyiv, Ukraine
asharkov@imath.kiev.ua

In nonlinear dynamics, currently considerable attention has been focussed on research
in so-called chimeras — the spatio-temporal states in which coherence and incoherence
coexist [1,2]. In the talk we analyze a link between chimera states and ideal turbulence.

[1] D. M. Abrams and S. H. Strogatz, Chimera States for Coupled Oscillators, Physical
Review Letters 93, 174102 (2004).

[2] O. E. Omel’chenko, Yu. L. Maistrenko and P. A. Tass, Chimera States: The nat-
ural Link between Coherence and Incoherence, Physical Review Letters 100, 044105
(2008).

[3] A. N. Sharkovsky and S. A. Berezovsky, Phase Transitions in correct-incorrect Cal-
culations for some Evolution Problems, Intern. J. Bifurcation and Chaos 13, 7 (2003),
1811-1821.

[4] A. N. Sharkovsky and E. Yu. Romanenko, Turbulence, ideal, Encyclopedia of Non-
linear Science, Routledge, Taylor & Francis, 2005, 955-957.
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Abstracts of Contributed Talks

Linear difference equations and inversion of matrices

J. ABDERRAMÁN MARRERO

ETSIT - U.P.M. - Technical University of Madrid
Department of Mathematics Applied to Information Technologies

Avda Complutense s/n. Ciudad Universitaria
28040 Madrid, Spain

jc.abderraman@upm.es

Algorithms in the inversion of almost-triangular and banded matrices, based on linear
differences equations, have profusely used. Compact representations for the elements of
the inverses of almost-triangular (tridiagonal and Hessenberg) matrices are considered.
The entries of the inverse matrices are given in terms of determinants of proper subma-
trices with the same structure. It gives simple proofs of such algorithms. In addition,
we introduce linear recurrences for the straightforward computation of the inverses of
triangular matrices.

It is a joint work with Mustapha Rachidi, Académie de Reims, France.
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Topological invariants of time-periodic dynamical systems

JOÃO FERREIRA ALVES

Centro de Análise Matemática
Geometria e Sistemas Dinâmicos

Instituto Superior Técnico
Universidade Técnica de Lisboa

Av. Rovisco Pais 1049-001 Lisboa Portugal
jalves@math.ist.utl.pt

Let I ⊂ R be a compact interval. By a time-periodic nonautonomous dynamical system
on I we mean a periodic sequence

F = {fn}+∞
n=0 ,

of continuous maps fn : I → I .
The relationship between topological entropy and periodic entropy of F is the main sub-
ject of this talk.

[1] S. Kolyada, M. Misiurewicz and L. Snoha, Topological entropy of nonautonomous
piecewise monotone dynamical systems on the interval, Fund. Math. 160, 2 (1999),
161-181.

[2] S. Kolyada and L. Snoha, Topological entropy of nonautonomous dynamical sys-
tems, Random Comput. Dynam. 4, 2-3 (1996), 205-233.
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On the some second-order rational difference equations
problems

AIJA AŅISIMOVA1 and INESE BULA1,2

1 University of Latvia
Department of Mathematics

Zeļļu iela 8, Rı̄ga LV 1002, Latvia
2Institute of Mathematics and Computer Science of University of Latvia

Raiņa bulvāris 29, Rı̄ga LV 1459, Latvia
2 http://home.lu.lv/∼ibula/

1 aija-anisimova@inbox.lv, 2 ibula@lanet.lv

In our talk we discuss about some second-order rational difference equations in form

xn+1 =
α+ βxn + γxn−1

A+Bxn + Cxn−1
, n = 0, 1, 2, . . . ,

and some second-order quadratic rational difference equation in form

xn+1 =
α+ βxnxn−1 + γxn−1

A+Bxnxn−1 + Cxn−1
, n = 0, 1, 2, . . . ,

which are specially research in [1] and [2]. For example, we investigate the rational dif-
ference equation

xn+1 =
α

(1 + xn)xn−1
, n = 0, 1, 2, . . . .

We give some answers of Open Problems whose are formulated in [1] and [2].

[1] A.M. Amleh, E. Camouzis and G. Ladas, On the Dynamics of a Rational Difference
Equations, Part 1, International Journal of Difference Equations 3, 1 (2008), 1–35.

[2] M.R.S. Kulenovič and G. Ladas, Dynamics of Second Order Rational Difference
Equations. With Open Problems and Conjectures, Chapman&Hall/CRC, USA, 2002.
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The loss of ”chaotic” variability in the beat of the aging heart -
constructing a delay difference equation

TAMARA AWERBUCH and RICHARD LEVINS

Harvard School of Public Health
Boston, MA 02115

Tamara@hsph.harvard.edu

Data from EKG shows that as people age their heart-beat looses variability. If we plot the
RR interval (the time intervals between beats) as a function of beat number, the young
healthy heart shows more variability than the old one, exhibiting an irregular pattern.
This ”chaotic” dynamics of the young heart-beat represents physiologic vitality which
is lost as the heart ages. The transition to periodic oscillations indicates a compromise
of cardiac function. The goal is to construct models of difference equations for young
and old hearts that will explain the data observed in the EKG; and ultimately to develop
equations that will relate a particular beat to the previous ones. The equations will dis-
play changes in dynamical patterns based on parameter values.
The initial characterization of the system is carried out via statistical analysis in order
to produce a phase map that will enable us to explore the order of the equations. Our
preliminary results show some loss of non-linearity as the heart ages, perhaps indicating
loss of physiologic regulation.
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The rotation matrix for vertex maps on graphs

CHRIS BERNHARDT

Department Mathematics
Fairfield University

Fairfield, 06824, USA
cbernhardt@fairfield.edu

http://cs.fairfield.edu/∼ bernhardt

It is well-known that for maps of the circle that are homotopic to the identity, the rota-
tion interval is defined. This talk shows a way of extending this idea to certain maps on
graphs.

Let G be a finite connected graph. Suppose f : G → G is a map homotopic to the identity
that is also monotonic on the edges and permutes the vertices, then for such a map there
is a rotation matrix, R, that is easily calculated. In this talk R will be calculated for some
examples, and some basic properties of R will be described. In particular, in the case of
the circle, it will be shown how the elements along the main diagonal of the matrix relate
to the length of the rotation interval.
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Perturbations of second order nonoscillatory scalar linear
dynamic equations on time scales

SIGRUN BODINE

University of Puget Sound
Department of Mathematics and Computer Science

Tacoma, WA, 98416

We are interested in the asymptotic behavior of solutions of

[r(t)x∆]∆ + f(t)xσ = 0, t ≥ t0, (1)

as a perturbation of
[r(t)y∆]∆ + g(t)yσ = 0, t ≥ t0, (2)

which is assumed to be nonoscillatory at infinity (here r(t) > 0).
The goal has been to identify conditions on the difference f − g as well as the solutions of
(2) so that solutions of (1) will be have asymptotically as those of (2) and to find estimates
of the error terms.
This problem has drawn significant attention in the past. It was studied extensively in
the setting of differential equations and to some extend for difference equations and time
scales. Methods used include fixed point and Riccati techniques for scalar equations.
Here we offer a new approach to this problem. Working in a matrix setting, we use
preliminary and so-called conditioning transformations to bring the system in the form

~z∆ = [Λ(t) +R(t)]~z,

where Λ is a diagonal matrix and R is a “small” perturbation. This allows us to apply
Levinson’s Fundamental Theorem on time scales to find the asymptotic behavior of so-
lutions of (1) and to estimate the error involved.
This method allows us to derive new results and to improve existing results.

This is a joint work with Professor Donald A. Lutz from San Diego State University.
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On equilibrium stability of difference equation in Banach space

JEVGENIJS CARKOVS

University of Latvia
Institute of Mathematics and Computer Science

Raiņa bulvāris 29, Rı̄ga LV 1459, Latvia
carkovs@latnet.lv

VASYĹ SLUSARCHUK

National University of Water Management
and Natural Resources Application
Department of Higher Mathematics

Soborna vul. 11, UA-33000 Rivne, Ukraine
V.Ye.Slyusarchuk@RSTU.rv.ua

The paper deals with the mappings of Banach space E given in a form of quasilinear
difference equation

xn+1 = Axn + Fnxn, n ≥ 0 (1)

where A is linear continuous operator, {Fn : E → E} are nonlinear bounded operators
satisfying identity Fn0 ≡ 0 and having infinitesimal limit at equilibrium point 0:

lim sup
‖x‖→0

sup
n≥0

‖Fnx‖

‖x‖ = 0

Side by side with the above equation we consider an equation of the first approximation,
that is, the linear difference equation

yn+1 = Ayn, n ≥ 0 (2)

We will discuss the assertions which guarantee local stability or instability for the trivial
solution of (1) if (2) to be of this specificity. It should be mentioned that our paper not
only generalizes well known finite dimensional results how it has been done in our pre-
vious papers (see, for example, [1]). Our research shows that the infinite dimension of
the space E not only strongle complicates computations and proofs of relevant theorems
by the first approximation but also can have significant influence to statement of these
results (see, for example, [2],[3]).

[1] V.Yu. Slyusarchuk and Ye.F. Tsarkov (J.Carkovs), Difference equations in Banach
space, Latvian Mathematical Yearbook No. 17, (1976), Riga, Zinatne, 214–229. (Rus.)

[2] V.Yu. Slyusarchuk, New theorem on instability of difference equations in linear
approximation, Scientific bulletin of Chelm, Section of mathematics and computer science
No. 1, (2007), 145–147.

[3] V.Yu. Slyusarchuk, Equations with Essentially instable solutions, Rivne, National Uni-
versity of Water Management and Natural Resources Application, (2005), 217 p.
(Ukr.)
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Extension of results guaranteeing a priori estimates of the
boundary value problem solutions and their derivatives1

JANIS CEPITIS

University of Latvia
Faculty of Physics and Mathematics
Zeļļu iela 8, Rı̄ga LV 1002, Latvia

janis.cepitis@lu.lv
http://home.lu.lv/∼ cepitis/index.html

For the ordinary second order non-linear differential equation two point boun- dary
value problems in the monographs [1], [2] were formulated conditions, which ensure the
a priori estimates of the problem solutions and their derivatives. The condition guaran-
teeing a priory estimate of the solution of such problems was signified in the well known
terms of the lower and upper functions α and β. Of course, the generalizations of classi-
cal Nagumo’s and Schrader’s conditions ensure also a priori estimate for the derivative
of the boundary value problem solution having a priori estimate. Moreover, such condi-
tions are possible express in the terms of differential inequalities, which involves some
functions realizing a priori estimate of the solution derivative, for example, φ and ψ.
There were in the singular cases also used the one-sided estimates for the right part of
equation.
We consider the possibility to carry out the analogous results for the corresponding
boundary value problems for the difference equations as well as equations on time scales.

[1] I.T. Kiguradze, Some Singular Boundary Value Problems of the Ordinary Differen-
tial Equations, Tbilisi, 1975. (Russian).

[2] N.I. Vasiljev and Ju.A. Klokov, Foundations of the Boundary Value Problems The-
ory of the Ordinary Differential Equations, Riga, ”Zinatne”, 1978. (Russian).

1Supported by ESF research project 2009/0223/1DP/1.1.1.2.0/09/APIA/VIAA/008.
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A periodically-forced mathematical model for the seasonal
dynamics of malaria in mosquitoes

NAKUL CHITNIS

Swiss Tropical and Public Health Institute
Department of Epidemiology and Public Health

Socinstrasse 57, Postfach
CH-4002 Basel

Switzerland
Nakul.Chitnis@unibas.ch

We describe and analyze a periodically-forced difference equation model for malaria in
mosquitoes. This model captures the effects of seasonality and allows the mosquitoes
to feed on a heterogeneous population of hosts. We show that the model is mathemati-
cally and physically well-posed, and numerically show the existence of a unique globally
asymptotically stable periodic orbit. We calculate field-measurable parameters that de-
scribe the level of malaria transmission in a given location and can be compared to data.
We link this model with an individual-based stochastic simulation model for malaria
in humans to compare the effects of different malaria control interventions in reducing
malaria transmission, morbidity, and mortality.
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Exact rates of decay of discrete Volterra convolution equations
whose kernels have known periodic and decay components

JOHN DANIELS

Dublin City University
School of Mathematical Sciences

Glasnevin,
Dublin 9, Ireland

john.daniels2@mail.dcu.ie

We consider a Volterra convolution summation equation where the kernel has specific
decay and periodic components. By a careful splitting of the summation we isolate the
periodic components and apply results on admissibility theory of Volterra operators to
analyse the decaying component. In general, we show (roughly speaking) that if the ker-
nel k decomposes according to k(n) ∼ p(n)γ(n) as n → ∞ where p is an asymptotically
N–periodic function, and γ is in a class of slowly decaying functions, then the solution
x(n) has asymptotic behaviour given by x(n) ∼ q(n)γ(n) as n → ∞ where q is an asymp-
totically N–periodic function. This extends work of Appleby, Győri and Reynolds (2006),
in which the kernel does not have a periodic component. We show a worked example of
this theory relevant to the decay of the autocorrelations of an ARCH(∞) process.

This is a joint work between John Appleby and John Daniels.

[1] J. A. D. Appleby, I. Győri, and D. W. Reynolds, On exact convergence rates for
solutions of linear systems of Volterra difference equations, J. Difference Equations
and Applications, 12, 12 (2006), 1257-1275.
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The structure of a set of solutions of two-point BVP between
lower and upper functions

MARIA DOBKEVICH

Daugavpils University
Parādes iela 1, Daugavpils LV 5400, Latvia

dobkevica@df.rtu.lv

We consider a two-point nonlinear BVP of Dirichlet type provided that there exist well
ordered lower and upper functions α(t) and β(t) (α < β). We assume that there exists a
solution ξ(t) of the BVP and the type of ξ(t) is not zero. We study properties of a set of
solutions to the BVP and establish in particular, lower bound of a number of solutions.
The types of solutions are discussed also.
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Maximum principles for one of the components of solution
vector for system of functional differential equations

ALEXANDER DOMOSHNITSKY

Ariel University Center
Ariel, Israel

adom@ariel.ac.il

The method to compare only one component of the solution vector of linear functional
differential systems, which does not require heavy sign restrictions on their coefficients,
is proposed in this talk. Necessary and sufficient conditions of the positivity of elements
in a corresponding row of Green’s matrix are obtained in the form of theorems about
differential inequalities. The main idea of our approach is to construct a first order func-
tional differential equation for the nth component of the solution vector and then to use
assertions about positivity of its Green’s functions. This demonstrates the importance to
study scalar equations written in a general operator form, where only properties of the
operators and not their forms are assumed. It should be also noted that the sufficient con-
ditions, obtained in this talk, cannot be improved in a corresponding sense and in many
cases does not require any smallness of the interval [0, ω], where the system is considered.
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Sturmain theory for symplectic difference systems

ONDŘEJ DOŠLÝ

Masaryk University
Department of Mathematics and Statistics

Kotlářská 2
CZ-61137 Brno, Czech Republic

dosly@math.muni.cz
http://www.math.muni.cz/∼dosly/

We consider the first order 2n-dimensional difference system

zk+1 = Skzk (S)

with symplectic matrix S, i.e.,

ST
k JSk = J , J =

(
0 I
−I 0

)
.

System (S) covers as special cases a variety of difference equations and systems, among
them also the Sturm-Liouville difference equation ∆(rk∆xk)+ pkxk+1 = 0. We show that
the classical Sturmian separation and comparison theorems can be extended in a natural
way to (S). The presented results have been achieved in the joint research with Martin
Bohner (University of Missouri, Rolla) and Werner Kratz (University of Ulm).

[1] M. Bohner, O. Došlý and W. Kratz, Sturmian and spectral theory for discrete sym-
plectic systems, Trans. Amer. Math. Soc. 361, 5 (2009), 3109–3123.

[2] O. Došlý and W. Kratz, Oscillation theorems for symplectic difference systems, J.
Difference Equ. Appl. 13, 7 (2007), 585–605.

[2] O. Došlý and W. Kratz, A Sturmian separation theorem for symplectic difference
systems, J. Math. Anal. Appl. 325,1 (2007), 333–341.
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Molecular modeling of single and multiple β - sheets of amyloid
B- protein (Aβ) 25 - 352

VITA DUKA1,2, ISABELLA BESTEL3, CEZARY CZAPLEWSKY4, ADAM
LIWO4, INTA LIEPINA2

1) Faculty of Physics and Mathematics, University of Latvia, Zellu iela 8, Riga LV1002,
Latvia,

2) Latvian Institute of Organic Synthesis, Aizkraukles str. 21, Riga LV1006, Latvia,
3) Victor Segalen University of Bordeaux II, 146 rue Leo-Saignat, 33076 Bordeaux

cedex, France,
4)University of Gdansk, ul. Sobieskiego 18, 80-952 Gdansk, Poland

vita.duka@lu.lv, inta@osi.lv

Molecular dynamics represents the computer approach to statistical mechanics, estimat-
ing equilibrium, stability and dynamic properties of a molecule system. The time-de-
pendent behavior of the system is described by Newton’s equations of motion, with the
potential energy between two atoms described as:

U = Ubond + Uangle + Utors + UvdW + Uelst + UHbond, (1)

where Ubond and Uangle are the bond and bond-angle distortion energies, Utors is the tor-
sional energy, UvdW is the energy of van der Waals non-bounded interactions, Uelst is the
electrostatic-interaction energy, and UHbond is the hydrogen-bonding energy. Equation (1)
together with a set of parameters define a force field. Amyloid beta protein is responsible
for formation of human amyloidosis leading to Alzheimer disease. A parallel single six
stranded β-sheet of amyloid β-protein 25-35 (Aβ 25-35) built from the peptide Aβ 25-35
strands and the stack of six beta sheets of Aβ 25-35 were investigated by means of molec-
ular dynamics (MD), Amber 9.0 force field, using isothermal-isobaric ensemble (NTP)
protocol, chlorine counterions, explicit water molecules.

2This work was supported by European Economic Area block grant ”Academic Research” LV0015.
EEZ09AP-68 ”Molecular modeling of amyloid formation”, France-Latvia project ”Osmose”. Calculations
were performed on computers of the Gdansk Academic Computer Center TASK.
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Bifurcation and invariant manifolds of competition models

SABER ELAYDI

Trinity University
Department of Mathematics

One Trinity Place, San Antonio, TX 78212, USA
ewaselaydi@trinity.edu

In this paper we study two-dimensional competition models that arise in population dy-
namics. In particular, we investigate the invariant manifolds, including the stable and
unstable manifolds as well as the important center manifolds. Saddle-node and period
doubling bifurcation route to chaos is exhibited via analytic methods and numerical sim-
ulations. In addition we will employ Liapunov exponent techniques to study stability
and chaos. Our models arise in the study of the distribution of mammals in some regions
in North America and in the study of invasive grass species in Texas.

Joint work with R. Luis, M. Guzowska, H. Oliveira.

[1] M. Guzowska, R. Luis, and S. Elaydi, Bifurcation and invariant manifolds of the
logistic competition model, Journal of Difference Eq. Appl. (2010), to appear
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Coexistence of oscillations and nonoscillations in delay
equations

JOSÉ M. FERREIRA

Instituto Superior Técnico
Mathematics Department

Av. Rovisco Pais
1049-100 Lisboa, Portugal

jferr@math.ist.utl.pt

SANDRA PINELAS

Universidade dos Açores
Departamento de Matematica

R. Mãe de Deus
9500-321 Ponta Delgada, Portugal

sandra.pinelas@uac.pt

In this work we study the existence of both oscillatory and nonoscilatory solutions of
delay equations. This analysis is made for difference equations

x (t) =

p∑

j=1

aj (t)x (t− rj) + f (t)

and also for diferrential difference equations

x′ (t) =
p∑

j=1

aj (t)x (t− rj) + f (t) .

We shall provide some sufficient conditions which guarantee the coexistence of both type
of solutions. Several examples which dwell upon the importance of our results are also
illustrated.

[1] A. Andruch-Sobiło and M. Migda, Bounded solutions of third order nonlinear dif-
ference equations, Rocky Mt. J. Math. 36, 1 (2006), 23-34.

[2] Z. Došla and A. Kobza, Global asymptotic properties of third order difference equa-
tions, Comput. Math. Appl. 48, 1-2 (2004), 191-200.
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Periodic orbits of the Kaldor-Kalecki trade

cycle model with delay

MARTA C. GADOTTI

Universidade Estadual Paulista
IGCE-Departamento de Matemática

Avenida 24A 1515, 13506-700
Rio Claro, Brasil

martacg@rc.unesp.br

We prove in [3] the occurrence of periodic orbits in a version of the renowned Kaldor
trade model. This is a delay differential system given by (1) describing interactions be-
tween the national gross product y and the capital stock k. The delay is a constant inher-
ent to the specific economy. In this work we obtain a sequence of Hopf bifurcations.
In [2] a delay T > 0 is incorporated in the investment in the Kaldor model as a reflection
of the Kalecki’s hypothesis of gestation lag. The resulting equations, named Kaldor-Kalecki
model by the authors, are the following:

ẏ(t) = α
[
I
(
y(t), k(t)

)− S
(
y(t), k(t)

)]
,

k̇(t) = I
(
y(t− T ), k(t)

)− δk(t).
(1)

I and S are the investment and the savings functions, respectively, α is the adjustment
coefficient in the goods market, usually referred as speed of adjustment, and δ is the
depreciation rate of the capital stock. Delays are incorporated, since the investment de-
pends on the income at the time investment is planned and on the capital stock at the
time investment is finished.
This is a joint work with M.V.S. Frasson, S.H.J. Nicola and Plácido Z. Táboas.

[1] N. Kaldor, A model of the trade cycle, Economic Journal 50, 197 (1940), 78-92.

[2] A. Krawiec and M. Szydłowski, The Kaldor-Kalecki business cycle model, Annals
of Operations Research 89 (1999), 89-100.

[3] M. V. S. Frasson, M. C. Gadotti, S. H. J. Nicola and P. Z. Táboas, Periodic orbits of
the Kaldor-Kalecki trade cycle model, to appear.
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Global bifurcation analysis of a biomedical dynamical system

VALERY A. GAIKO

National Academy of Sciences of Belarus
United Institute of Informatics Problems
L. Beda Str. 6-4, Minsk 220040, Belarus

valery.gaiko@yahoo.com

We study a quartic dynamical system which models the dynamics of the populations of
predators and their prey that use the group defense strategy in a given biomedical system
and which is a variation on the classical Lotka–Volterra system:

ẋ = x((1− λx)(αx2 + βx+ 1)− y) ≡ P,

ẏ = −y((δ + µy)(αx2 + βx+ 1)− x) ≡ Q,
(1)

where α ≥ 0, δ > 0, λ > 0, µ ≥ 0 and β > −2
√
α are parameters. Such a quartic dynam-

ical model was studied earlier, for instance, in [1]. However, its qualitative analysis was
incomplete, since the global bifurcations of limit cycles could not be studied properly by
means of the methods and techniques which were used earlier in the qualitative theory
of dynamicalsystems.
Together with (1), we will also consider an auxiliary system

ẋ = P − γQ, ẏ = Q+ γP, (2)

applying to these systems new bifurcation methods and geometric approaches devel-
oped in [2] and completing the qualitative analysis of system (1).

[1] H. Zhu, S. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-
prey system with nonmonotonic functional response, SIAM J. Appl. Math. 63 (2002),
636–683.

[2] V. A. Gaiko, Global Bifurcation Theory and Hilbert’s Sixteenth Problem, Kluwer, Boston,
2003.
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Spectral problem for second order finite difference operator3
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We consider the discrete spectral problem Ay = µy for finite difference operator on uni-
form grid xj = jh,Nh = L where h is the grid parameter, µ is the eigenvalue and A, y
are correspondly the 3-diagonal matrix and column-vector of N + 1 order ( eigenvector)
with elements yj , j = 0, N.
The finite difference expression Ay can be represented in the following form [1]:
−2(y1−y0)/h

2+2σ1y0/h, j = 0; −(yj+1−2yj+yj−1)/h
2, j = 1, N − 1; −2(yN−1−yN )/h2+

2σ2yN/h, j = N, where σ1, σ2 are nonnegative parameters. This spectral problem is used
in order to solve the 3th kind boundary value problem of second order derivatives with
respect to x ∈ (0, L).
Using the scalar product of two vectors [y1, y2] = h(

∑N−1
j=1 y1j y

2
j + 0.5(y10y

2
0 + y1Ny2N ))

one can prove, that the matrix A is symmetric and [Ay, y] ≥ 0. The spectral problem
has following solution: ynj = C−1

n ( sin(pnh)h cos(pnxj) + σ1 sin(pnxj)), j = 0, N , µn =
4
h2 sin

2(pnh/2), where pn are the positive roots of the following transcendental equation:

cot(pnL) =
sin2(pnh)−h2σ1σ2

h(σ1+σ2) sin(pnh)
, n = 1, N − 1. The two last roots pN , pN+1 can not be obtained

from this transcendental equation.
Due to value of the parameter Q = Lσ1σ2

σ1+σ2
we can obtain one (Q < 1) or two (Q ≥ 1)

roots from following new transcendental equation: coth(pnL) = sinh2(pnh)+h2σ1σ2

h(σ1+σ2) sinh(pnh)
, n =

N,N + 1 and µn = 4
h2 cosh

2(pnh/2), ynj = C−1
n (−1)j( sinh(pnh)h cosh(pnxj)− σ1 sinh(pnxj)).

Then determine the constants C2
n = [yn, yn] we have the orthonormed eigenvectors yn, ym

for all n,m = 1, N + 1.

[1] A.A. Samarski, Theory of finite difference schemes, Moscow, Nauka, 1977. (Rus-
sian)

3Supported by ESF research project 2009/0223/1DP/1.1.1.2.0/09/APIA/VIAA/008 and Latvian Science
Foundation grant Nr. 09.1572
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The critical difference operators are the non-negative operators that can be turned to
negative ones by small negative perturbations of their coefficients. This concept has been
introduced in [2] for difference operators of the second order and generalized in [1] for
2n-order Sturm-Liouville difference operators. Lately, we have studied the one term op-
erator l(y)k = ∆n(rk∆

nyk) and, using a structure of the solution space of the equation
l(y)k = 0, we have found a criterion of criticality of this operator. Our next goal is to use
these one term critical operators to find new oscillation criteria for more complex differ-
ence operators.

[1] O. Došlý and P. Hasil, Critical higher order Sturm-Liouville difference operators,
Journal of Difference Equations and Applications, to appear.

[2] F. Gesztesy and Z. Zhao, Critical and subcritical Jacobi operators defined as
Friedrichs extensions, Journal of Differential Equations 103, 1 (1993), 68–93.
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An algebraic context for difference operators
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After introducing the so called h–deformed Weyl–Heisenberg algebra and its standard
representations we discuss some consequences of the defining (commutator) relations.
Then we will study some ladders and quivers in that algebra. Two sets of polynomials
will play a crucial role in the algebraic representation of the difference operator. In the
last part we will study the h ↘ 0 transition to the continuous setting.

[1] S. Hilger, The Category of Ladders, Results in Mathematics 57, 3 (2010), 335– 364.
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Stochastically perturbed Ricker equations
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The Ricker model

xt+1 = xt exp(r − γxt), t = 0, 1, 2, . . . , x0 > 0

where xt is the population density at time t, er is the growth rate at small densities and γ
is an environmental parameter, is one of the most used models for single-species popula-
tion dynamics. I will discuss some stochastic versions of the model with special empha-
sis on qualitative behavior: what features are retained when we go from deterministic to
stochastic, what new features appear when the stochastic perturbations are ”large”. In
particular, we will look at a population-dependent branching model which is derived in
much the same way as Ricker’s original equation.

[1] G. Högnäs, On some one-dimensional stochastic population models. In: Probability
on Algebraic Structures (G. Budzban, Ph. Feinsilver and A. Mukherjea, Eds.), Con-
temporary Mathematics 261, American Mathematical Society 2000, 209 - 220.

[2] G. Högnäs, Quasi-stationary behavior in a simple discrete-time model. In: Branch-
ing Processes: Variation, Growth, and Extinction of Populations (P. Haccou, P. Jagers
and V. Vatutin, Eds.), Cambridge University Press (2005), 198 - 211.

[3] B. M. Melbourne and A. Hastings, Extinction risk depends
strongly on factors contributing to stochasticity, Nature 454 (3 July
2008), 100 - 103. See also Supplementary material, 7 pp., on
http://www.nature.com/nature/journal/v454/n7200/extref/nature06922-s1.pdf



30

Newton problem solutions for 3D parabolic differential equation
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The parabolic differential equation with Newton boundary conditions for a parallelepi-
ped is formulated as follows
∂
∂tc (x, t) = D

∑3
n=1

∂2

∂x2
n
c (x, t) +

∑3
n=1 vn

∂
∂xn

c (x, t) + f (c, t, x), where x = (x1, x2, x3),
0 < xn < ln, n = 1, 3, t > 0. The initial condition is c(x, 0) = c0(x) and the boundary
conditions are γn1 (c (x, t))|xn=0

+ γn2

(
∂

∂xn
c (x, t)

)
|xn=0

= Φn (x\{xn}, t),

γn3 (c (x, t))|xn=ln
+ γn4

(
∂

∂xn
c (x, t)

)
|xn=ln

= Ψn (x\{xn}, t).
The general solution of the problem is known, but our purpose is to show solution ex-
istence conditions expressed with the new limitations as bilateral inequalities that are
joining the velocities vn to the constants from the boundary conditions γnm.
Green function approach is used for finding analytic solution of the Newton problem.
Program code algorithm for numerical implementation of the solution is developed. Pro-
gram code contains two parts where the first one is for finding eigenvalues from transcen-
dental equation and the second is for numerical integration. Message Passing Interface
is used for binding together more than one processor that provides a faster computation.
On the base of test example the accuracy of numerical solution is estimated. It was shown
that given new limitations are important because they exclude divergent solutions.

[1] J. Rimshans and S. Guseynov, Numerical propagator method solutions for the
linear parabolic initial boundary-value problems, Special Issue: Sixth Interna-
tional Congress on Industrial Applied Mathematics (ICIAM07) and GAMM An-
nual Meeting, Zr̈ich 2007,DOI: 10.1002/pamm.200700376, p. 2020059-2020060
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On the global character of a rational second order difference
equation
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This talk refers to the global character of solutions of the rational Difference Equation

xn+1 =
a+ xn−1

A+ xnxn−1
, n = 0, 1, . . .

with positive parameters and positive initial conditions.
(This is a joint work with E. Camouzis, E. Drymonis, and G. Ladas)

[1] A.M. Amleh, E. Camouzis, and G. Ladas, On second-order rational difference equa-
tions, Part 1, J. Difference Equ. Appl. 13 (2007), 969-1004.

[2] A.M. Amleh, E. Camouzis, and G. Ladas, On second-order rational difference equa-
tions, Part 2, J. Difference Equ. Appl. 14 (2008), 215-228.
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Positive solutions of second order Emden Fowler difference
equations

VITALIY KHARKOV

Odessa National University
Institute of Mathematics, Economics and Mechanics

Dvoryanskaya str. 2
65026 Odessa, Ukraine
kharkov v m@mail.ru

In this paper we consider second order Emden Fowler difference equation

∆2yn = αpn|yn+1|σsign yn+1, (1)

where α ∈ {−1, 1}, σ ∈ R \ {0, 1} and pn is positive for all n ∈ N. For the equation (1) the
asymptotic representations of all positive solutions are established when the sequence pn

satisfies condition lim
n→+∞

n∆pn
pn

= k, k ∈ R. The results are illustrated on examples.

[1] V. Evtukhov, Asymptotic properties of solutions of one class second order differen-
tial equations, Math. Nachr 115 (1984), 215-236.

[2] I. Kiguradze and T. Chanturia, Asymptotic properties of solutions of nonau-
tonomous ordinary differential equations, Kluwer Academic Publishers, Dordrecht-
Boston-London, 1993.

[3] V. Kharkov, Asymptotic behavior of a class of solutions of second-order Emden-
Fowler difference equations, Proceedings of the 14th international conference on differ-
ence equations and applications, edited by M. Bohner, Z. Dosla, G. Ladas, Mehmet Unal,
Agacik Zafer (2009), 213-220.



33

Stability of a difference equation with two delays
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We study the stability problem of a difference equation

xn = axn−k + bxn−m,

where k,m are delays. The cases of real and complex coefficients a, b are considered.

This is a joint work with V.Malygina and T. Khokhlova.

[1] Yu. Nikolaev, On studying the geometry of the set of the stable polynomials of the
linear discrete systems, Automation and Remote Control 63, 7 (2002), 44-54.

[2] M.M. Kipnis and R.M. Nigmatulin, Stability of the trinomial linear difference equa-
tions with two delays, Automation and Remote Control 65, 11 (2004), 25-39.

[3] F.M. Dannan, The asymptotic stability of x(n+k)+ax(n)+bx(n−l) = 0, J. Difference
Equ. Appl. 10 (2004), 589–599.
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Using stability charts, we compare the stability properties of the zero solution of delay
differential equations with distributed delays and associated equations with a discrete
delay. The procedure allows us to locate the parameters when bifurcations occur. In-
deed, we present numerical examples when delay distributions not only lead to increased
stability region in the corresponding parameter space, but also generate complicated so-
lutions after the loss of the linear stability.
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Periodical cicadas (Magicicada spp.) are known for their unusually long life cycle for in-
sects and their prime periodicity of either 13 or 17 years. One of the explanations for the
prime periodicity is that the prime periods are selected to prevent cicadas from resonat-
ing with predators with submultiple periods (e.g., see [1]). Based on this idea, Webb [2]
constructed mathematical models and gave a numerical example that periodically oscil-
lating predators with 2- or 3-year period eliminate nonprime number periodical cicadas.
However, in Webb’s model, the interaction between well-timed cicada-cohorts and their
predators is ignored. In our study, we construct an age-structured model for dynamically
interacting predator and prey populations and consider the problem of the predator-
resonance hypothesis. Our main result shows that preys are not necessarily eliminated
by predators with submultiple periods since invasion of preys is always facilitated by
their well-timed cohorts. It is also shown that synchronized life-cycles between predator
and prey populations can produce a permanent system, in which no cohorts are missing
in both populations. This contrasts with the result that systems with asynchronous life-
cycles always have a stable coexistence state where perfect periodicity is maintained in
both populations. These results suggest that resonances with predators are not always
deleterious to their preys.

[1] M. Lloyd and H. S. Dybas, The periodical cicada problem. II. evolution, Evolution
20 (1966), 466–505.

[2] G. F. Webb, The prime number periodical cicada problem, Discrete Contin. Dyn.
Syst. Ser. B 1 (2001), 387–399.
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Molecular dynamics of amylin amyloid single and multiple β -
sheets4
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Molecular mechanics describes the potential energy of an atom system as the sum of all
pairwise interactions of individual atoms. The potential energy between two atoms U

U = Ubond + Uangle + Utors + UvdW + Uelst + UHbond, (1)

where Ubond and Uangle are the bond and bond-angle distortion energies, respectively,
Utors is the torsional energy, UvdW is the energy of van der Waals non-bonded interac-
tions, Uelst is the electrostatic-interaction energy, and UHbond is an additional term to re-
produce the hydrogen-bonding energy. The parameter set of (1) in composition with the
equation (1) defines a force field. Molecular dynamics represents the computer approach
to statistical mechanics, estimating equilibrium, stability and dynamic properties of a
molecule system. The time-dependent behavior of the system is described by Newton’s
equations of motion:

MẌ = F (X) = −∇U(X).

4This work was supported by ESF project 2009/0197/1DP/1.1.1.2.0/09/APIA/VIAA/014, European
Economic Area block grant ”Academic Research” LV0015.EEZ09AP- 68 ”Molecular modeling of amyloid
formation”. Calculations were performed on computers of the Gdansk Academic Computer Center TASK.
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In this talk we give some notes about a bifurcation of a periodic solution of the p−periodic
nonautonomous Ricker-type difference equation given by

(xn+1, yn+1) = Fn(xn, yn), n ∈ Z+,

where
Fn(x, y) = (xeKn−x−any, yeLn−y−bnx),

and Kn = Kn mod p > 0, Ln = Ln mod p > 0, an = an mod p ∈ (0, 1), and bn = bn mod p ∈
(0, 1). A special attention will be given to studying attenuance and resonance in two di-
mensional systems.

*Joint work with Saber Elaydi and Henrique Oliveira

[1] J. Cushing, S. Henson, and C. Blackburn, Multiple mixed-type attractors in a competi-
tion model, Journal of Biological Dynamics, Vol 1, No 4 (2007), pp 347-362

[2] J. Cushing, S. Levarge, N. Chitnis, and S. Henson, Some discrete competition models
and the competitive exclusion principle, Journal of Difference Equations and Applica-
tions, Vol 10, No. 13-15 (2004), pp. 1139-1151

[3] S. Elaydi, Discrete Chaos: With Applications in Science and Engineering, Chapman and
Hall/CRC, Second Edition, 2008.

[4] S. Elaydi, An Introduction to Difference Equations, Springer, Third Edition, 2005.

[5] S. Elaydi and A. Yakubu, Global Stability of Cycles: Lotka-Volterra Competition Model
With Stocking, Journal of Difference Equations and Applications, Vol 8, No 6 (2002),
pp 537-549

[6] M. Guzowska, R. Luı́s, and S. Elaydi, Bifurcation and invariant manifolds of the logistic
competition model, Journal of Difference Equations and Applications, submitted
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[7] R. Luı́s, S.Elaydi, and H.Oliveira, Bifurcation and invariant manifolds of an autonomous
Ricker-type competition model, in progress

[8] R. Luı́s, S.Elaydi, and H.Oliveira, Nonautonomous periodic systems with Allee effects,
Journal of Difference Equations and Applications, to appear

[9] R. Sacker, A note on periodic Ricker map, Journal of Difference Equations and Appli-
cations, Vol. 13, No. 1, pp. 89-92, 2007.

[10] M. Tabor, Chaos and Integrability in Nonlinear Dynamics: An Introduction, New York,
Wiley, 1989.
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We consider the non-autonomous rational difference equation

xn+1 =
xn−1

pn + xnxn−1
, n = 0, 1, . . .

where the initial conditions x−1, x0 are nonnegative real numbers and (pn) denotes the
period-two sequence of positive values a and b. We prove that zero is the unique eqilib-
rium point and that for a > 1 and b > 1 it is globally asymptotically stable. We investigate
also asymptotic behavior of solutions of the above equation.

[1] A. Andruch-Sobiło and M. Migda, On the rational recursive sequence xn+1 =
axn−1

b+cxnxn−1
, Tatra Mt. Math. Publ. 43 (2009), 1-9.

[2] M.J. Douraki and J. Mashreghi, On the population model of the non-autonomous
logistic equation of second order with period-two parameters, J. Difference Equ.
Appl. 14 (2008), 321-257.

[3] M. Kulenovic, G. Ladas and C.B. Overdeep, On the dynamics of xn+1 = pn + xn−1

xn

with a period-two coefficient, J. Difference Equ. Appl. 10 (2004), 905-914.



40

Three laws of chaos

MICHAŁ MISIUREWICZ

Indiana University - Purdue University Indianapolis
Department of Mathematical Sciences

402 N. Blackford Street
Indianapolis, IN 46202-3216, USA

mmisiure@math.iupui.edu
http://www.math.iupui.edu/∼mmisiure/

Sensitive dependence on initial conditions is a well known feature of chaotic dynamical
systems. A butterfly flapping its wings in Hong Kong can cause a thunderstorm in Riga
several days later. Nevertheless, the behavior of this butterfly should not change the long-
term averages – how many thunderstorms per year will be observed in Riga in the next
500 years. However, it may happen that there is also sensitive dependence on parameters.
In this case, bringing an additional butterfly to Hong Kong may essentially change those
averages. Additionally, one cannot predict whether getting rid of such dangerous species
as wing-flapping butterflies from Hong Kong will improve or deteriorate the climate in
Riga.
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We consider a functional nodal method and its application to finding the numerical so-
lution of 2D Helmholtz equation [1] in Cartesian coordinates with Dirichlet boundary
conditions:

uxx + uyy + σ2u = 0,Ω ⊂ R2,

u(x, y) = f(x, y), ∀(x, y) ∈ ∂Ω.

Helmholtz equation is used in many fields of mathematical physics, for instance, in
acoustics, electrodynamics, theory of elasticity and non-linear advection diffusion.
The method represents an algorithm of separating the 2D Helmholtz equation into two
1D equations by averaging the flux in each of the directions x and y. Flux continuity
is preserved. As the result we obtain two symmetric 7-point difference schemes, which
consist of 3 points fixed in one of the directions, and 4 points fixed in the other direction.
A truncation error analysis within the domain Ω is done and advantages of this method
in comparison to other methods are shown.
The considered nodal method allows us to obtain separate difference schemes for each of
the direction and preserve flux and solution continuity and it is a certain advantage over
other existing methods [2].

[1] A.N. Tikhonov and A.A. Samarski, Equations of mathematical physics, Moscow.
MSU, 1999

[2] I. Singer and E. Turkel, Sixth Order Accurate Finite Difference Schemes for the
Helmholtz Equation, J. Comput. Acoust., (2006)
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In this note we analyze the symmetry, with respect to the order of composition of the
maps, of degenerate bifurcation equations of periodic orbits in non autonomous systems.
We prove that cyclic permutations in the order of compositions do not affect the solution
of the bifurcation equations in the parameter space.

Joint work with Emma D’Aniello
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In this paper we study the asymptotic behavior and the periodicity of the positive solu-
tions of the nonlinear difference equation

xn+1 = An +
xpn−1

xqn
n = 0, 1, ...

where An is a positive bounded sequence, p, q are positive constants and x−1, x0 ∈ (0,∞).
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In the paper we deal with q-fractional difference control systems, evolving on R+, with
the initialization by the additional function ϕ that is vanished on a time interval [0, ε). In
that way, starting with q-difference at point t0 > 0, we get only finite number of values
ϕ
(

t0
qk

)
, for k ∈ {0, . . . , l}, of initializing function ϕ. We call such set of values, stated as

the extended vector, by l-memory. Hence a dynamical system is defined together with
initializing points of time and length of a memory:

∆α
q x(t) = A(qt)x(qt), t > t0,

x(t) = (ϕua) (t), t ≤ t0,

y(t) = C(t)x(t),

where α is any rational number, q ∈ (0, 1), matrices A(·) ∈ Rn×n, C(·) ∈ Rp×n have co-
efficients depending on t ∈ R+, ϕ : R → Rn and ua : R → {0, 1}, a ∈ R+ is function such
that ua(t) = 0 for t < a and ua(t) = 1 for t ≥ a. For this system we construct the formula
of the solution and discuss possible applications in linear control theory (such conditions
as the observability and controllability in s-steps).

5Partially supported by BUT grant S/WI/1/08.
6On leave of absence from Białystok University of Technology, Poland. Partially supported by R&D unit

CIDMA and FTC through program Ciência 2007.
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Autonomous difference equations feature distinguished solutions like constant or peri-
odic ones. In this talk we investigate their behavior under parametric perturbations, where
constant parameters in the discrete equation are replaced by time-varying sequences.
The corresponding functional analytical approach turns out to be a quite fruitful con-
tribution to the general theory of discrete nonautonomous dynamical systems (cf. the
references [1–4]).

[1] C. Pötzsche. Robustness of hyperbolic solutions under parametric perturbations, J.
Difference Equ. Appl. 15, 8–9 (2009), 803–819.

[2] C. Pötzsche. A note on the dichotomy spectrum. J. Difference Equ. Appl. 15, 10
(2009), 1021–1025.

[3] C. Pötzsche. Nonautonomous continuation of bounded solutions. Discrete Contin.
Dyn. Syst. (Series S), to appear, (2010).

[4] C. Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapunov-
Schmidt approach. Discrete Contin. Dyn. Syst. (Series B) 14, 2/3 (2010).
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We investigate the local stability of equilibrium points, boudedness nature of solution,
periodic solutions and the attractivity of the periodic solutions.
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2Institute of Mathematics and Computer Science of University of Latvia

Raiņa bulvāris 29, Rı̄ga LV 1459, Latvia
http://home.lu.lv/∼ reinf/

reinf@latnet.lv

In Banach space X×E the system of difference equations

x(t+ 1) = g(x(t)) +G(x(t), p(t)),
p(t+ 1) = A(x(t))p(t) + Φ(x(t), p(t))

is considered. Sufficient conditions under which there is an local Lipschitzian invariant
manifold u : X → E are obtained. Using this result we find sufficient conditions of partial
decoupling and simplifying of the system of noninvertible difference equations.

7Supported by ESF research project 2009/0223/1DP/1.1.1.2.0/09/APIA/VIAA/008 and Latvian Science
Foundation grant Nr. 09.1220.
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On a system of two exponential type difference equations

CHRISTOS J. SCHINAS

Democritus University of Thrace
Department of Electrical and Computer Engineering

Kimmeria Campus, Xanthi, GR-67100, Greece
cschinas@ee.duth.gr

Our goal is to investigate the existence of the positive solutions, the existence of nonnega-
tive equilibrium and the convergence of a positive solution to a nonnegative equilibrium
of the system of difference equations

yn+1 = (1−
k−1∑

j=0

zn−j)(1− e−Byn), zn+1 = (1−
k−1∑

j=0

yn−j)(1− e−Czn)

where B,C are positive numbers, k ∈ {2, 3, ...}, n = 0, 1, . . . and the initial values
y−k+1, y−k+2, . . . , y0, z−k+1, z−k+2, . . . , z0 are positive numbers.

This is a joint paper with G. Stefanidou and G. Papaschinopoulos.
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Asymptotically periodic solutions of Volterra systems of
difference equations

EWA L. SCHMEIDEL

Poznan University of Technology
Institute of Mathematics

ul. Piotrowo 3a
60-965 Poznań, Poland

ewa.schmeidel@put.poznan.pl
http://www.put.poznan.pl/∼ schmeide/pl/

A Volterra system of difference equations of the form

xs(n+ 1) = as(n) + bs(n)xs(n) +
r∑

p=1

n∑

i=0

Ksp(n, i)xp(i)

where n ∈ N , as, bs, xs : N → R and Ksp : N × N → R, s = 1, 2, . . . , r is studied. Suffi-
cient conditions for the existence of asymptotically periodic solutions of this system are
derived.

[1] J. Diblı́k, M. Růžičková and E. Schmeidel, Asymptotically periodic solutions of
Volterra difference equations, Tatra Mt. Math. Publ. 43 (2009), 43-61.

[2] J. Diblı́k, M. Růžičková and E. Schmeidel, Asymptotically periodic solutions of
Volterra systems of difference equations, Comput. Math. Appl. 59 (2010), 2854-2867.
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On zero controllability of abstract evolution control equations

BENZION SHKLYAR

Holon Instotute of Technology
52 Golomb St., P.O.B. 305

58-102 Holon, Israel
shk b@hit.ac.il

http://www.hit.ac.il/acc/shk b

Let X,U be complex Hilbert spaces, where U is finite-dimensional with dimension r ≥ 1,
and let A be infinitesimal generator of strongly continuous C0-semigroups S (t) in X [4].
Consider the abstract evolution control equation [4].

ẋ (t) = Ax (t) +Bu (t) , x (0) = x0, 0 ≤ t < +∞, (1)

where x (t) , x0 ∈ X,u (t) ∈ U is a control function, B : U → X is a linear possibly
unbounded operator, W ⊂ X ⊂ V are Hilbert spaces with continuous dense injections,
W = D (A) equipped with graphic norm, V = W ∗, the operator B is a bounded operator
from U to V (see more details in [5], [8].
Evolution equation (1) is a common mathematical model for distributed control systems.
It provides the unified abstract approach for investigation of partial differential control
systems governed by both boundary and distributed control, functional differential con-
trol systems [2], [3] integro-differential control systems and others kinds of distributed
control systems.
The exact null-controllability problem can be formulated roughly as follows.
Given predefined time t1 and initial state x0, the goal is to find out whether there exists
an admissible control u (t) driving x0 to the zero final state, provided that a control will
be turned off after predefined time t2, t2 ≤ t1.
Necessary and sufficient conditions of exact null-controllability for linear evolution con-
trol equations with unbounded input operator are presented. They are obtained by trans-
formation of exact null-controllability problem to linear infinite moment problem, which
is defined as follows.
Given sequences {cn, n = 1, 2 . . . , } and {xn ∈ X,n = 1, 2 . . . , } find an element g ∈ X
such that

cn = (xn, g) , n = 1, 2 . . . , (2)

where (x, y) , x, y ∈ X is the inner product of X.
The problem formulated above has a long history and many applications in many bran-
ches of the system control theory.
It is well-known, that if the sequence {xn, n = 1, 2, . . . , } forms a Riesz basic in the clo-
sure of its linear span, then the linear moment problem (2)) has a solution if and only if∑∞

n=1 |cn|2 < ∞ and vice-versa [1], [7]. This well-known fact is one of main tools for the
controllability analysis of partial hyperbolic control equations.
However the sequence {xn, n = 1, 2, . . . , } doesn’t need to be a Riesz basic for the solv-
ability of linear moment problem.
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In this talk we present the null-controllability of control evolution equations for the case
when the sequence {xn, n = 1, 2, . . . , } doesn’t form a Riesz basic in its closed linear span.
Application to difference control system are considered.

[1] N. Bari, Biorthogonal sequences and bases in Hilbert spaces. Uchen. Zap. Mosk.
Univ., 148, Nat, 4(1951), 69—107.

[2] R. Bellmann, K. Cooke, Differential-Difference Equations, New York Academic
Press London, 1963.

[3] J. Hale, Theory of Functional Differential Equations, Springer-Verlag, New-York
Heidelberg Berlin, 1977.

[4] E. Hille, R. Philips, Functional Analysis and Semi-Groups, AMS, 1957.

[5] D. Salamon, Infinite dimensional linear systems with unbounded control and ob-
servation: a functional analytic approach, Trans. Amer. Math. Soc., 300(1987), 383
— 431.

[7] D. Ullrich, Divided differences and systems of nonharmonic Fourier series, Pro-
ceedings of AMS, 80 (1980), 47 — 57.

[8] G. Weiss, Admissibility of unbounded control operators, SIAM J. Contr. and Opti-
miz., 27 (1989), 527 — 545.
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On the third order boundary value problems

SERGEY SMIRNOV

Daugavpils University
The Faculty of Natural Sciences and Mathematics
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srgsm@inbox.lv

http://www.du.lv

For the third order autonomous nonlinear differential equations estimations of the num-
ber of solutions to two and three point boundary value problem are given. Estimations
are based on precise formulas for ratios of successive segments where solutions do not
change sign.

[1] P. Bailey, L. Shampine and P. Waltman, Nonlinear two point boundary value prob-
lems, Academic Press, New York 1968.

[2] S. Bernfeld and V. Lakshmikantham, An Introduction to Nonlinear Boundary Value
Problems, Academic Press, New York 1974.

[3] N.I. Vasilyev and Yu.A. Klokov, Foundations of the theory of boundary value prob-
lems for ordinary differential equations, Zinatne, Riga 1978.
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Multiplicity of solutions for discrete problems with double-well
potentials

PETR STEHLIK

University of West Bohemia
Department of Mathematics

Univerzitni 22
31200 Pilsen, Czech Republic

psthelik@kma.zcu.cz
http://www.kma.zcu.cz/pstehlik

In this talk we present some basic multiplicity results for a general class of nonlinear dis-
crete problems with double-well potentials. Variational techniques are used to obtain the
existence of saddle-point type critical points. Partial difference equations as well as prob-
lems involving discrete p-Laplacian are considered. Finally, we discuss the boundedness
of solutions and the applicability of these results.

[1] J. Otta and P. Stehlik, Multiplicity of Solutions for Discrete Problems with Double-
Well Potentials, submitted.

[2] P. Stehlik, On Variational Methods for Periodic Discrete Problems, Journal of Differ-
ence Equations and Applications 14, 3 (2008), 259-273.
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On some symmetric difference equations

STEVO STEVIĆ

Mathematical Institute of the Serbian Academy of Sciences
Knez Mihailova 36/III, 11000 Beograd, Serbia

sstevic@ptt.rs

and

BRATISLAV D. IRIČANIN

Belgrade University, Faculty of Electrical Engineering
Bulevar Kralja Aleksandra 73, 11000 Beograd, Serbia

iricanin@etf.rs

We give a survey of old results regarding some classes of symmetric difference equations
and present some new ones. One of these classes is the following

yn =
P 2m+1
2m+1 (y

r
n−k1

, yrn−k2
, . . . , yrn−k2m+1

)

P 2m+1
2m (yrn−k1

, yrn−k2
, . . . , yrn−k2m+1

)
, n ∈ N0,

where r ∈ (0, 1], m ∈ N, 1 ≤ k1 < k2 < · · · < k2m+1

P 2m+1
2m+1 (x1, x2, . . . , x2m+1) =

2m+1∑

r=1,r odd

∑

{t1,...,tr}⊆S2m+1,t1<t2<···<tr

xt1xt2 · · ·xtr ,

and

P 2m+1
2m (x1, x2, . . . , x2m+1) = 1 +

2m∑

r=2,r even

∑

{t1,...,tr}⊂S2m+1,t1<t2<···<tr

xt1xt2 · · ·xtr ,

with y−k2m+1 , . . . , y−1 ∈ (0,∞)

[1] S. Stević, Global stability and asymptotics of some classes of rational difference
equations, J. Math. Anal. Appl. 316 (2006), 60-68.

[2] S. Stević, Global stability of some symmetric difference equations, Appl. Math. Com-
put. 216 (2010), 179-186.
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Extension of discrete LQR problem to symplectic systems

R. ŠIMON HILSCHER

Masaryk University
Department of Mathematics and Statistics

Kotlářská 2
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hilscher@math.muni.cz
http://www.math.muni.cz/∼hilscher/

In this talk we consider a discrete linear-quadratic regulator problem in the setting of
discrete symplectic systems (S). We derive minimal conditions which guarantee the solv-
ability of this problem. The matrices appearing in these conditions have close connection
to the focal point definition of conjoined bases of (S). We show that the optimal solution
of this problem has a feedback form and that it is constructed from a generalized discrete
Riccati equation. Several examples are provided illustrating this theory. The results of
this paper extend the results obtained earlier by the authors for the special case of dis-
crete linear Hamiltonian systems. We will also discuss a generalization of these results to
time scales. The results were obtained jointly with Vera Zeidan from the Michigan State
University.

[1] R. Hilscher and V. Zeidan, Extension of discrete LQR–problem to symplectic sys-
tems, Int. J. Difference Equ. 2 (2007), no. 2, 197–208.

[2] R. Hilscher and V. Zeidan, Solvability of the discrete LQR-problem under mini-
mal assumptions, in: “Difference Equations and Discrete Dynamical Systems”, Pro-
ceedings of the Ninth International Conference on Difference Equations and Appli-
cations (Los Angeles, 2004), L. Allen, B. Aulbach, S. Elaydi, and R. Sacker, editors,
pp. 273–282, World Scientific Publishing Co., London, 2005.
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Sufficient number of integrals for the pth order Lyness equation

DINH T. TRAN, PETER H VAN DER KAMP and G. R.W QUISPEL

La Trobe Uninersity
Melbourne, Australia

td2tran@students.latrobe.edu.au

We present a sufficient number of explicit integrals for the Lyness equation of arbitrary
order. We use the staircase method to construct integrals of a derivative equation of the
Lyness equation. Closed-form expressions for the integrals are given based on a non-
commutative Vieta expansion. The integrals of the Lyness equation follow directly from
these integrals. Previously found integrals for the Lyness equation arise as special cases
of our new set of integrals.

[1] Gao M , Kato Y and Ito M 2004 Some invariants for kth-order Lyness equation Appl.
Math. Lett 17 1183–89

[2] Grammaticos B, Ramani A and Tamizhmani T 2009 Investigating the integrability
of the Lyness mapping J. Phys. A: Math. Theor. 42 454009–15

[3] Tran D T, van der Kamp P H and Quispel G R W Sufficient number of integrals for
the pth order Lyness equation, in preparation
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Some remarks on matrix finite-difference equations

VLADIMIR B. VASILYEV

Bryansk State University
Department of Mathematics and Information Technologies

Bezhitskaya 14, 241036 Bryansk, Russia
vladimir.b.vasilyev@gmail.com

The systems of finite-difference equations of arbitrary order were obtained in previous
author’s papers [1] and [2], related to solvability of elliptic boundary value problems
in non-smooth domains. For the Laplacian in a plane sector with Dirichlet boundary
condition on one angle side and the Neumann condition on other ones there arises 2× 2
- system of first order of type

A(λ+ 1) = B(λ)A(λ) (1)

with given matrix B(λ).
One discusses certain solving variants for (1).

[1] V.B. Vasilyev, Fourier multipliers, pseudodifferential equations, wave factorization,
boundary value problems. Editorial URSS, Moscow, 2006.

[2] V.B. Vasilyev, Discrete convolutions and difference equations, Proc. of Dynamic Sys-
tems and Appl. 5 (2008), 474–480.
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Developing and use of propagator difference scheme for solving
of ADR equations

DAIGA ZAIME and JANIS RIMSHANS

Liepaja University
Institute of Mathematical Sciences and Information Technologies

Lielā iela 14, Liepāja LV 3401, Latvia
daiga.zaime@liepu.lv
http://imsit.liepu.lv

The propagator method was developed in order to elaborate new effective tools for math-
ematical modelling. At first it was used for solve of ADR equation in geochemical pro-
cesses [1]. Stability criterions by use of von Neumann criterion were obtained. It was
proved, our propagator difference scheme has essentially weaker restrictions for the time
step than the central difference scheme, so it allows to get faster computation results.
Later the area of use for the propagator method was extended. It was used by modelling
of temperature changes in process of electrochemical machining [2]. More essential is the
possibility of solving the nonlinear problems with our propagator method. We developed
the propagator difference scheme for the dissipative Murray’s equation, who describes
biomedical processes [3]. We get useful conditions for the convergence and stability.

[1] J.Rimshans and D.Zaime, Propagator Method for numerical Solution of the Cauchy
Problem for ADR Equation, Journal of Differential Equations, Latvia University Press
8, (2008).

[2] D.Zaime, J.Rimshans and S.Guseynov, Analytical and numerical solutions of tem-
perature transients in electrochemical machining, Advanced Computer Techniques in
Applied Electromagnetics, Springer Series in Soft Computing Series 4240, (2008), 60-65.

[3] J. D. Murray, Mathematical Biology II, Springer, (2003).
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Rare periodic and chaotic attractors and bifurcation groups in
typical nonlinear dynamical discrete models

MIKHAIL V. ZAKRZHEVSKY1, IGOR T. SCHUKIN2, RAISA S. SMIRNOVA3,
VALENTIN YU. FROLOV4, VLADISLAV YU. YEVSTIGNEJEV5 ALEX V.

KLOKOV6

Riga Technical University
Institute of Mechanics1,4,5,6, Daugavpils Branch2,3

1 Kalku St.1,4,5,6, St. Smilsu 902,3

LV-1658 Riga, Latvia1,4,5,6, LV-5410 Daugavpils, Latvia2,3
mzakr@latnet.lv1

The problems of the global dynamics of nonlinear systems, described by discrete equa-
tions, are under consideration. The paper is a continuation of our publications on rare
attractors (RA) and a method of complete bifurcation groups (MCBG) recently proposed
by one of the authors [1, 2]. In this paper some rare periodic and chaotic attractors have
been obtained for different typical nonlinear dynamical systems. As examples we discuss
using the method of complete bifurcation group for logistical equations with square and
cube nonlinearity [2], population models [3] and a problem of turbulent (vortex) flow
[Ch. Skiadas, Von Karman Streets Chaotic Simulation, 2009]. In the presentation a new
software Discrete-ABC is discussed as well.

[1] M. Zakrzhevsky, New concepts of nonlinear dynamics: complete bifurcation
groups, protuberances, unstable periodic infinitiums and rare attractors, Journal of
Vibroengineering JVE 10, Issue 4, 12 (2008), 421-441.

[2] I. Schukin, Development of the methods and algorithms of simulation of nonlinear
dynamics problems. Bifurcations, chaos and rare attractors, PhD Thesis), Riga -
Daugavpils, Latvia (2005), 205 p.

[3] Ch. Skiadas, Two Population Model for the Stock Market Problem, in Chaotic Sys-
tems: Theory and Applications, C. Skiadas and I. Dimotikalis, Eds, World Scientific),
(2010), 302-308.

[4] Zh. Zhusubaliyev, E. Soukhoterin, and E. Mosekilde, Border-Collision Bifurcations
on a Two-Dimensional Torus and Transitions to Chaos in a Control System with
Pulse-Width Modulation, Proc. of 5th Int. IFAC Symposium NOLCOS’01) 1, Els. Sci.
(2002), 155-160.



60
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A new approach for the global bifurcation analysis for nonlinear difference equations,
based on the ideas of Poincaré, Birkhoff and Andronov, is proposed. The main idea of
the approach is a concept of complete bifurcation groups and periodic branch continua-
tion along stable and unstable solutions, named by the author as a method of complete
bifurcation groups (MCBG) [1-2]. The article is widely illustrated using difference nonlin-
ear models with one-degree-of-freedom. Rare attractors in difference nonlinear models,
e.g. [3], can be found using the same approaches as for nonlinear ODE [4].

[1] M. Zakrzhevsky, New concepts of nonlinear dynamics: complete bifurcation
groups, protuberances, unstable periodic infinitiums and rare attractors, Journal of
Vibroengineering JVE 10, Issue 4, 12 (2008), 421-441.

[2] M. Zakrzhevsky, Global Nonlinear Dynamics Based on the Method of Complete
Bifurcation Groups and Rare Attractors, Proceedings of the ASME 2009 (IDETC/CIE
2009), CD, San Diego, USA (2009), 8 p.

[3] Ch. Skiadas and C. Skiadas, Chaotic Modeling and Simulation: Analysis of Chaotic
Models, Attractors and Forms, Taylor and Francis/CRC), London, (2009).

[4] M. Zakrzhevsky, How to Find Rare Periodic and Rare Chaotic Attrac-
tors?, Abstracts of the 8th AIMS International Conference,http://www.math.tu-
dresden.de/ koksch/AIMS/, Dresden, Germany(2010), 9 p.
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Asymptotic properties of solution of Volterra difference
equations with periodic coefficients
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A Volterra difference equation of the form

x(n+ 1) = a(n) + b(n)x(n) +

n∑

i=0

K(n, i)x(i),

where n ∈ N := {0, 1, 2, . . . }, a, b, x : N → R, K : N × N → R is investigated. Here
sequences a and K are not identically equal to zero, and b : N → R\{0} is ω-periodic and
ω−1∏
k=0

b(k) = β. Sufficient conditions for the existence of weighted asymptotically periodic

solutions of this equation are presented. So, for any nonzero constant c, there exists a
solution x of the considered equation such that

x(n)

β[n−1
ω

]
= u(n) + v(n)

with u(n) := c
n∗∏
k=0

b(k) and limn→∞ v(n) = 0 where the function [ · ] is the greatest

integer function and n∗ is the remainder of dividing n− 1 by ω.
The presented results improve and generalized the results presented in [2].

[1] J. Appleby, I. Györi and D. Reynolds, On exact convergence rates for solutions of
linear systems of Volterra difference equations, J.Difference Equ. Appl. 12 (2006),
1257-1275.

[2] J. Diblı́k, M. Růžičková and E. Schmeidel, Asymptotically periodic solutions of
Volterra difference equations, Tatra Mt. Math. Publ. 43 (2009), 43-61.
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On Weyl–Titchmarsh theory for dynamic symplectic systems on
time scales 8 9

PETR ZEMÁNEK

Department of Mathematics and Statistics
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Kotlářská 2, CZ-61137 Brno, Czech Republic
zemanek@math.muni.cz

We establish Weyl–Titchmarsh theory for dynamic symplectic systems on time scales. It
is known that these systems cover 2nd order Sturm–Liouvile equations as well as linear
Hamiltonian and symplectic systems. Hence our theory generalizes and unifies recently
obtained results (by Bohner, Clark, Gesztesy, Hinton, Schneider, Shaw, Shi, Sun, etc.) on
Weyl–Titchmarsh theory. Firstly, we consider a regular spectral problem. In the next part
we focus on a singular spectral problem, we introduce Weyl–Titchmarsh M function,
discuss its properties, and investigate necessary and sufficient conditions for the limit
circle and limit point cases.

8Key words and phrases. Dynamic symplectic system; Time scales; Weyl–Titchamrsh M function; Regular
spectral problem; Singular spectral problem; Limit point case; Limit circle case.

92010 Mathematics Subject Classification. Primary 34B20. Secondary 34N05.
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